Theory of nonstationary linear filtering in the Fourier domain with application to time variant filtering

نویسنده

  • Gary F. Margrave
چکیده

A general linear theory is presented which describes the extension of the convolutional method to nonstationary processes. Two alternate extensions are explored. The first, called nonstationary convolution, corresponds to the linear superposition of scaled impulse responses of a nonstationary filter. The second, called nonstationary combination, does not correspond to such a superposition but is shown to be a linear process capable of achieving arbitrarily abrupt temporal variations in the output frequency spectrum. Both extensions have stationary convolution as a limiting form. The theory is then recast into the Fourier domain where it is shown that stationary filters correspond to a multiplication of the input signal spectrum by a diagonal filter matrix while nonstationary filters generate off-diagonal terms in the filter matrix. The width of significant off-diagonal power is directly proportional to the degree of nonstationarity. Both nonstationary convolution or combination may be applied in the Fourier domain, and for quasi-stationary filters, efficiency is improved by using sparse matrix methods. Unlike stationary theory, a third domain which combines time and frequency is also possible. Here, nonstationary convolution expresses as a generalized forward Fourier integral of the product of the nonstationary filter and the time domain input signal. The result is the spectrum of the filtered signal. Nonstationary combination reformulates as a generalized inverse Fourier integral of the product of the spectrum of the input trace and the nonstationary filter which results in the time domain output signal. The mixed domain is an ideal domain for filter design which proceeds by specifying the filter as an arbitrary complex function on a time-frequency grid. Explicit formulae are given to move nonstationary filters expressed in any one of the three domains into any other. INTRODUCTION A common occurrence in geophysical research and data processing is the need to apply convolutional operators which somehow depend on both variables of a Fourier transform pair. Time variant filtering is a typical example. Filters are convolutional operators which shape the spectrum of a time series therefore a time variant filter must both shape the spectrum and change with time. Another example is the vertical extrapolation of a wavefield through a laterally variable velocity structure. The kinematics of wavefield extrapolation can be handled by a phase shift which depends on horizontal wavenumber and velocity, or equivalently by a spatial convolution over the lateral coordinate. Thus, when velocity varies laterally, a convolution is desired which depends on both the lateral coordinate and the horizontal wavenumber. Ordinary convolutional filters are incapable of directly handling these and other similar situations since they assume a "stationary" impulse response. By stationary it is meant that the filter's properties do not change with time or space. Since the convolution theorem (see any good text on signal processing, for example Karl, 1989, p 88, or Brigham ,1974, p 58) states that stationary convolution is a multiplication of Fourier spectra, it is commonly assumed that Fourier methods are also incapable of

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theory of nonstationary linear filtering in the Fourier domain

A general linear theory is presented which describes the extension of the convolutional method to nonstationary processes. This theory can apply any linear, nonstationary filter, with arbitrary time and frequency variation, in the time, Fourier, or mixed (time-frequency) domains. The filter application equations and the expressions to move the filter between domains are all ordinary Fourier tra...

متن کامل

Application of Single-Frequency Time-Space Filtering Technique for Seismic Ground Roll and Random Noise Attenuation

Time-frequency filtering is an acceptable technique for attenuating noise in 2-D (time-space) and 3-D (time-space-space) reflection seismic data. The common approach for this purpose is transforming each seismic signal from 1-D time domain to a 2-D time-frequency domain and then denoising the signal by a designed filter and finally transforming back the filtered signal to original time domain. ...

متن کامل

Delay Spoofing Reduction in GPS Navigation System based on Time and Transform Domain Adaptive Filtering

Due to widespread use of Global Positioning System (GPS) in different applications, the issue of GPS signal interference cancelation is becoming an increasing concern. One of the most important intentional interferences is spoofing signals. An effective interference (delay spoof) reduction method based on adaptive filtering is developed in this paper. The principle of method is using adaptive f...

متن کامل

Change Point Estimation of the Stationary State in Auto Regressive Moving Average Models, Using Maximum Likelihood Estimation and Singular Value Decomposition-based Filtering

In this paper, for the first time, the subject of change point estimation has been utilized in the stationary state of auto regressive moving average (ARMA) (1, 1). In the monitoring phase, in case the features of the question pursue a time series, i.e., ARMA(1,1), on the basis of the maximum likelihood technique, an approach will be developed for the estimation of the stationary state’s change...

متن کامل

Optimal filtering in fractional Fourier domains

For time-invariant degradation models and stationary signals and noise, the classical Fourier domain Wiener filter, which can be implemented in O(N logN) time, gives the minimum mean-square-error estimate of the original undistorted signal. For time-varying degradations and nonstationary processes, however, the optimal linear estimate requires O(N2) time for implementation. We consider filterin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996